3.306 \(\int \frac {1}{(e \csc (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=172 \[ -\frac {4}{a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {2 \cos ^3(c+d x)}{7 a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {26 \cos (c+d x)}{21 a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {4 \sin ^2(c+d x)}{5 a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {52 F\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{21 a^2 d e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}} \]

[Out]

-4/a^2/d/e^3/(e*csc(d*x+c))^(1/2)+26/21*cos(d*x+c)/a^2/d/e^3/(e*csc(d*x+c))^(1/2)+2/7*cos(d*x+c)^3/a^2/d/e^3/(
e*csc(d*x+c))^(1/2)+4/5*sin(d*x+c)^2/a^2/d/e^3/(e*csc(d*x+c))^(1/2)-52/21*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/
sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))/a^2/d/e^3/(e*csc(d*x+c))^(1/2)/sin(d*x+
c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.46, antiderivative size = 172, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3878, 3872, 2875, 2873, 2569, 2641, 2564, 14} \[ -\frac {4}{a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {2 \cos ^3(c+d x)}{7 a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {26 \cos (c+d x)}{21 a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {4 \sin ^2(c+d x)}{5 a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {52 F\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{21 a^2 d e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((e*Csc[c + d*x])^(7/2)*(a + a*Sec[c + d*x])^2),x]

[Out]

-4/(a^2*d*e^3*Sqrt[e*Csc[c + d*x]]) + (26*Cos[c + d*x])/(21*a^2*d*e^3*Sqrt[e*Csc[c + d*x]]) + (2*Cos[c + d*x]^
3)/(7*a^2*d*e^3*Sqrt[e*Csc[c + d*x]]) + (52*EllipticF[(c - Pi/2 + d*x)/2, 2])/(21*a^2*d*e^3*Sqrt[e*Csc[c + d*x
]]*Sqrt[Sin[c + d*x]]) + (4*Sin[c + d*x]^2)/(5*a^2*d*e^3*Sqrt[e*Csc[c + d*x]])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2569

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(b*Sin[e +
 f*x])^(n + 1)*(a*Cos[e + f*x])^(m - 1))/(b*f*(m + n)), x] + Dist[(a^2*(m - 1))/(m + n), Int[(b*Sin[e + f*x])^
n*(a*Cos[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ[2*m
, 2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2873

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2875

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Dist[(a/g)^(2*m), Int[((g*Cos[e + f*x])^(2*m + p)*(d*Sin[e + f*x])^n)/(a - b*Sin[e +
 f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 3878

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Dist[g^Int
Part[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p], Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x],
x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {1}{(e \csc (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx &=\frac {\int \frac {\sin ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx}{e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=\frac {\int \frac {\cos ^2(c+d x) \sin ^{\frac {7}{2}}(c+d x)}{(-a-a \cos (c+d x))^2} \, dx}{e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=\frac {\int \frac {\cos ^2(c+d x) (-a+a \cos (c+d x))^2}{\sqrt {\sin (c+d x)}} \, dx}{a^4 e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=\frac {\int \left (\frac {a^2 \cos ^2(c+d x)}{\sqrt {\sin (c+d x)}}-\frac {2 a^2 \cos ^3(c+d x)}{\sqrt {\sin (c+d x)}}+\frac {a^2 \cos ^4(c+d x)}{\sqrt {\sin (c+d x)}}\right ) \, dx}{a^4 e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=\frac {\int \frac {\cos ^2(c+d x)}{\sqrt {\sin (c+d x)}} \, dx}{a^2 e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {\int \frac {\cos ^4(c+d x)}{\sqrt {\sin (c+d x)}} \, dx}{a^2 e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}-\frac {2 \int \frac {\cos ^3(c+d x)}{\sqrt {\sin (c+d x)}} \, dx}{a^2 e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=\frac {2 \cos (c+d x)}{3 a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {2 \cos ^3(c+d x)}{7 a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {2 \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx}{3 a^2 e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {6 \int \frac {\cos ^2(c+d x)}{\sqrt {\sin (c+d x)}} \, dx}{7 a^2 e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}-\frac {2 \operatorname {Subst}\left (\int \frac {1-x^2}{\sqrt {x}} \, dx,x,\sin (c+d x)\right )}{a^2 d e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=\frac {26 \cos (c+d x)}{21 a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {2 \cos ^3(c+d x)}{7 a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {4 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{3 a^2 d e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {4 \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx}{7 a^2 e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}-\frac {2 \operatorname {Subst}\left (\int \left (\frac {1}{\sqrt {x}}-x^{3/2}\right ) \, dx,x,\sin (c+d x)\right )}{a^2 d e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=-\frac {4}{a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {26 \cos (c+d x)}{21 a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {2 \cos ^3(c+d x)}{7 a^2 d e^3 \sqrt {e \csc (c+d x)}}+\frac {52 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{21 a^2 d e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {4 \sin ^2(c+d x)}{5 a^2 d e^3 \sqrt {e \csc (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.20, size = 94, normalized size = 0.55 \[ \frac {\sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)} \left (\sqrt {\sin (c+d x)} (305 \cos (c+d x)-84 \cos (2 (c+d x))+15 \cos (3 (c+d x))-756)-520 F\left (\left .\frac {1}{4} (-2 c-2 d x+\pi )\right |2\right )\right )}{210 a^2 d e^4} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Csc[c + d*x])^(7/2)*(a + a*Sec[c + d*x])^2),x]

[Out]

(Sqrt[e*Csc[c + d*x]]*(-520*EllipticF[(-2*c + Pi - 2*d*x)/4, 2] + (-756 + 305*Cos[c + d*x] - 84*Cos[2*(c + d*x
)] + 15*Cos[3*(c + d*x)])*Sqrt[Sin[c + d*x]])*Sqrt[Sin[c + d*x]])/(210*a^2*d*e^4)

________________________________________________________________________________________

fricas [F]  time = 0.74, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {e \csc \left (d x + c\right )}}{a^{2} e^{4} \csc \left (d x + c\right )^{4} \sec \left (d x + c\right )^{2} + 2 \, a^{2} e^{4} \csc \left (d x + c\right )^{4} \sec \left (d x + c\right ) + a^{2} e^{4} \csc \left (d x + c\right )^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*csc(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(sqrt(e*csc(d*x + c))/(a^2*e^4*csc(d*x + c)^4*sec(d*x + c)^2 + 2*a^2*e^4*csc(d*x + c)^4*sec(d*x + c) +
 a^2*e^4*csc(d*x + c)^4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (e \csc \left (d x + c\right )\right )^{\frac {7}{2}} {\left (a \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*csc(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((e*csc(d*x + c))^(7/2)*(a*sec(d*x + c) + a)^2), x)

________________________________________________________________________________________

maple [C]  time = 1.24, size = 224, normalized size = 1.30 \[ \frac {\left (-130 i \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {-\frac {i \cos \left (d x +c \right )-i-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )+15 \left (\cos ^{4}\left (d x +c \right )\right ) \sqrt {2}-57 \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right )+107 \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}-233 \cos \left (d x +c \right ) \sqrt {2}+168 \sqrt {2}\right ) \sqrt {2}}{105 a^{2} d \left (-1+\cos \left (d x +c \right )\right ) \left (\frac {e}{\sin \left (d x +c \right )}\right )^{\frac {7}{2}} \sin \left (d x +c \right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*csc(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x)

[Out]

1/105/a^2/d*(-130*I*sin(d*x+c)*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^
(1/2)*(-(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticF(((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2)
,1/2*2^(1/2))+15*cos(d*x+c)^4*2^(1/2)-57*2^(1/2)*cos(d*x+c)^3+107*cos(d*x+c)^2*2^(1/2)-233*cos(d*x+c)*2^(1/2)+
168*2^(1/2))/(-1+cos(d*x+c))/(e/sin(d*x+c))^(7/2)/sin(d*x+c)^3*2^(1/2)

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*csc(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^2}{a^2\,{\left (\frac {e}{\sin \left (c+d\,x\right )}\right )}^{7/2}\,{\left (\cos \left (c+d\,x\right )+1\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + a/cos(c + d*x))^2*(e/sin(c + d*x))^(7/2)),x)

[Out]

int(cos(c + d*x)^2/(a^2*(e/sin(c + d*x))^(7/2)*(cos(c + d*x) + 1)^2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*csc(d*x+c))**(7/2)/(a+a*sec(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________